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Highlights  57 

• Transfer efficiency is a key parameter describing ecosystem structure and function and is used to 58 

estimate fisheries production, however, it is also one of the most uncertain parameters.  59 

• Questions remain about how habitats, food resources, fishing pressure, spatiotemporal scales, 60 

temperature, primary production, and other climate drivers impact transfer efficiency.  61 

• Direct measurements of transfer efficiency are difficult, but observations of marine population 62 

abundances, diets, productivity, stable isotope analysis, and models integrating these constraints 63 

can provide transfer efficiency estimates.    64 
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• Recent estimates suggest that transfer efficiency is more variable than previously thought, 65 

compounding uncertainties in marine ecosystem predictions and projections.  66 

• Increased understanding of factors contributing to variation in transfer efficiency will improve 67 

projections of fishing and climate change impacts on marine ecosystems.  68 

 69 

Glossary 70 

- Assimilation efficiency: proportion of ingested material that is broken down by digestive enzymes 71 

to fuel the organism’s metabolic processes.  Unassimilated material is egested. 72 

- Energy flux model: a model that quantifies relationships between biodiversity and the flow of 73 

energy through ecosystems 74 

- Food web: a system of interconnected feeding relationships or food chains. Illustrations depict 75 

resources and consumers with nodes linked by lines that symbolize a feeding relationship (e.g. 76 

Figure 1D).  Nodes can represent predator and prey, species, trophic levels, functional groups or 77 

size classes.   78 

- Food web model or ecosystem model:  a mathematical representation of how energy or biomass 79 

flows from primary producers to primary consumers and then to secondary consumers and higher 80 

predators.    81 

- Predator-prey mass ratio: the ratio of the average mass of an individual predator to that of its 82 

prey.   83 

- Production: the generation of biomass or energy.  Primary production refers to the synthesis of 84 

organic compounds from carbon dioxide most often via photosynthesis.  Secondary production 85 

involves the generation of biomass through consumption of another organism. 86 

- Productivity: the rate of production.  87 

- Resilience: ability of a population or ecosystem to recover to its original state following a 88 

disturbance.  89 
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- Size spectrum model:  a mathematical representation of a food web that groups individuals by 90 

their sizes.   91 

- Trophic level model: a mathematical representation of a food web that groups individuals by their 92 

position in a food chain. 93 

- Stable isotopes: naturally occurring, non-radioactive atoms of the same element that have 94 

different numbers of neutrons. The isotope with fewer neutrons is lighter in mass, which results in 95 

faster chemical reaction rates and may lead to a preference for its uptake by organisms.  96 

Comparing ratios of carbon and nitrogen stable isotopes in organismal tissues to ratios in their 97 

prey can elucidate the processes that formed these tissues and estimate the organism’s trophic 98 

level. 99 

- Transfer efficiency: the proportion of resource production converted into consumer production.  100 

Transfer efficiency is often calculated as the proportion of production passed from one node to 101 

another in a food web. 102 

- Trophic level: the position of an individual within a food web based on the number of feeding links 103 

between it and the primary producer.  Primary producers such as phytoplankton and plants have 104 

a trophic level of 1, herbivores have a trophic level of 2, carnivores have a trophic level of at 105 

least 3.  Non-integer trophic levels result from mixed diets.  Detritus is often also assigned a 106 

trophic level of 1.  107 

 108 

Abstract 109 

Transfer efficiency is the proportion of energy passed between nodes in food webs.  It is an emergent, 110 

unitless property that is difficult to measure and responds dynamically to environmental and ecosystem 111 

changes.  Because the consequences of changes in transfer efficiency compound through ecosystems, slight 112 

variations can have large effects on food availability for top predators.  We review processes controlling 113 

transfer efficiency, approaches to estimate it, and known variations across ocean biomes.  Both process-114 

level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly 115 
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variable, impacted by fishing, and will decline with climate change.  It is important that we more fully 116 

resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine 117 

ecosystems and fisheries resources. 118 

 119 

Efficiency of energy transfer through food webs 120 

Transfer efficiency (see Glossary) is an emergent, unitless property that quantifies the fraction of 121 

energy passed from one node to another in a food web.  It is often estimated as the ratio of production 122 

at a trophic level relative to one trophic level below (Figure 1; [1-5]).  A high transfer efficiency means 123 

that a greater proportion of production at lower trophic levels is converted to production at the upper 124 

trophic levels.  Transfer efficiency is a critical factor shaping marine ecosystems, as even subtle shifts in 125 

transfer efficiency can compound across trophic levels and lead to profound differences in abundances of 126 

top predators (Boxes 1, 2; [2,6-10]) and sustainable fishing rates [4,5,11].  Fisheries catches, for example, 127 

vary by more than two orders of magnitude across heavily fished systems despite variations in primary 128 

production within a factor of four [8].  Cross-biome gradients in transfer efficiencies underlie these 129 

differences, with high transfer efficiencies accentuating fish biomass peaks in high primary production 130 

areas and low efficiencies deepening lows in oligotrophic (low primary production) systems [2,8].  As 131 

climate change affects ocean temperature and primary production [12], increased transfer efficiencies 132 

could compensate for changes in primary production.  Alternatively, decreased transfer efficiencies could 133 

exacerbate declines in primary production, reducing potential fisheries harvest from the oceans [13,14].   134 

Transfer efficiency is often illustrated using a trophic pyramid (Figure 1A).  The trophic pyramid 135 

presents a useful and conceptually simple depiction of trophodynamics – the thinning of the trophic 136 

pyramid at higher trophic levels is indicative of energy not transferred, resulting in decreasing production.  137 

Generally, a transfer efficiency of ~10%, based on early model estimates [4], is used as a characteristic 138 

value for marine ecosystems (Figure 1A).  139 

Despite its recognized importance, transfer efficiency persists as a dominant source of uncertainty 140 

in our understanding of current marine ecosystems and projected changes.  This reflects three challenges: 1) 141 



 7 

transfer efficiency is determined by diverse processes at multiple scales with potentially complex 142 

dependencies on environmental and ecosystem properties, 2) it is difficult to measure and estimate, and 3) 143 

current models used to predict marine resource trajectories generally have highly simplified 144 

representations of it.  This contribution provides a synthesis of these challenges, our present understanding 145 

of transfer efficiency, and a summary of estimates of its value.   146 

 147 

Processes controlling transfer efficiency 148 

A complex set of processes control the distribution of production among trophic levels (Figure 1).  149 

We group this diversity of processes into three categories operating at different scales: metabolism at the 150 

individual organism scale (Figure 1B), life cycle at the species population scale (Figure 1C), and food webs 151 

at the ecosystem scale (Figure 1D).  The integration of all these processes and scales ultimately determines 152 

the trophic organization of an ecosystem, the production of each level within it, and the efficiency of 153 

energy transfer through it. 154 

 155 

Metabolism  156 

 At the individual level, numerous metabolic processes modulate the translation of ingested 157 

material to the production of new organic matter (Fig. 1B).  Once material is ingested, a fraction of it is 158 

broken down by digestive enzymes to fuel the organism’s metabolic processes.  This fraction is referred to 159 

as the assimilation efficiency, with unassimilated material lost to egestion of dissolved and particulate 160 

organic material.  Assimilated material is then partitioned between catabolic (energy producing) and 161 

anabolic (tissue building) processes, with anabolic processes only possible once catabolic needs are met.  162 

Catabolic metabolism is often further divided into basal (or maintenance) and active respiration, with the 163 

former costs incurred regardless of the organism’s activity, and the latter increasing with movement and 164 

feeding levels.  Only the anabolic investment is reflected in transfer efficiency, and each of the processes 165 

toward this final investment have complex environmental dependencies [15].   166 

 The metabolic theory of ecology [16] predicts that increasing temperature increases the rates of 167 

most biological processes to a point, including the rates at which organisms respire, [16-17], grow, and 168 
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reproduce [18,19,22].  Metabolic and growth rates of primary producers are generally less temperature-169 

sensitive than those of consumers [17] and can have different temperature dependencies [20].  This can 170 

lead to differential rates of consumer production relative to primary production as temperature changes 171 

[21], thus affecting transfer efficiency.  In many cases, increasing ocean temperatures are associated with 172 

increasing stratification, decreased resource availability [19] or reduced food quality [22], complicating 173 

detection of direct temperature effects.  Ecological stoichiometry has demonstrated theoretically and 174 

empirically that nutrition of prey relative to predator demands determines transfer efficiency [23].  175 

Consumers feeding on high quality prey (i.e., rich in macronutrients and essential fatty acids) have higher 176 

growth rates [24] resulting in greater transfer efficiencies [25-28].   177 

 178 

Life cycle 179 

Life cycles (Fig. 1C) shape the translation of anabolic reproductive investments into production 180 

observed at each trophic level.  The most volatile life cycle element for an individual species is survival 181 

through early life stages (i.e., recruitment in the fisheries context [29]).  Subtle changes in food resources 182 

and metabolism have been implicated in large changes in early stage growth and survival at the species 183 

level [30-32].  Changes in timing of food availability due to climate change can have strong impacts on 184 

the reproductive success of a species [33].  Since volatility in survival is species-specific, food web structure 185 

can be maintained by having one species in a similar trophic position compensate for another, resulting in 186 

resilience in trophic structure and transfer efficiency at the ecosystem level.  However, fluctuations in 187 

species abundances can control energy pathways through food webs, and systems dominated by a small 188 

number of species may have limited resilience, [34-35].  For example, a food web with multiple forage 189 

fish species will be more resilient to changes in abundance of a specific forage fish species due to reduced 190 

reproduction, as the other species can play the same trophic role and provide alternative energy 191 

pathways to higher trophic levels (Figure 1D).  Furthermore, climate change is projected to affect the 192 

timing of consumer life cycles and critical resources, increasing the probability of extreme mismatches 193 

affecting species reproduction and growth, capable of restructuring food webs and reducing ecosystem 194 

level transfer efficiencies [36-40].   195 
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 196 

Food web structure 197 

Transfer efficiency is further shaped at the ecosystem scale by a diversity of food web 198 

interconnections and non-predatory fluxes of organic material.  Alternative pathways for primary 199 

production through food webs have different efficiencies and the emergent transfer efficiency integrates 200 

across these pathways.  Prominent examples from the plankton food web are small phytoplankton 201 

dominated oligotrophic systems where multiple zooplankton consumer links are required to reach forage 202 

fish [2,41].  These systems are contrasted by productive coastal areas dominated by large phytoplankton, 203 

where forage fish are often only one trophic level removed from phytoplankton [2,41].  The partitioning 204 

between these pathways can be controlled by passing eddies and fronts leading to a time-varying trophic 205 

organization that does not always reflect the average state [42].  The spatial distribution or patchiness of 206 

prey can also influence transfer efficiency.   Variation in phytoplankton abundances at the micro- to meso-207 

scales has been suggested to enhance production, which is especially important for explaining high transfer 208 

efficiencies in oligotrophic regions [43]. 209 

Non-predatory loss mechanisms include any food web processes that prevent energy from 210 

reaching higher trophic (e.g., burial of organic matter that has sunk to the sea floor – Figure 1D).  Viral 211 

lysis, for example, cycles bacterial and phytoplankton biomass back to dissolved organic material where 212 

detritivores such as bacteria are the consumers [44].  Exudation (leakage) of fixed organic carbon by 213 

phytoplankton [45] has similar trophic consequences.  If viewed as external to the natural ecosystem, 214 

fishing also results in a removal of energy that reduces ecosystem-scale transfer efficiency between 215 

subsequent trophic levels.  For pelagic ecosystems, the sinking of organic material as phytoplankton 216 

aggregates, fecal pellets, jelly falls or seasonal/diel migrations also present losses of energy losses that 217 

are ultimately reflected in transfer efficiency (Figure 1D);  [2,41,46-48].  The environmental, physiological, 218 

and ecological dynamics governing each of these processes are as complex as those governing trophic 219 

linkages, and alternative assumptions about the form of these losses can have significant effects on 220 

emergent transfer efficiency [49]. 221 
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Benthic and pelagic systems often have different energy pathways, which can lead to differential 222 

transfer efficiencies.  In benthic ecosystems, the flux of detritus from surface waters and vertically 223 

migrating organisms provide the primary energy inputs [50-51].  Analysis of global marine catch data has 224 

provided modest evidence for higher transfer efficiencies associated with benthic food webs [8], where 225 

food resources are concentrated in a two-dimensional space requiring less foraging [52].  However, in 226 

lake ecosystems, there is no clear agreement whether benthic or pelagic food webs exhibit higher transfer 227 

efficiency [53-55].  In near-shore coastal ecosystems, benthic and pelagic ecosystems are frequently 228 

coupled, and dynamic linkages in energy transfer are a key component of how they function [50].  For 229 

example, in coral reef ecosystems – known to be nutrient limited yet paradoxically highly productive and 230 

biodiverse – sponges consume dissolved organic material and excrete their cells as detritus, providing a 231 

critical energy pathway to higher trophic levels that increases transfer efficiency [51].  Additionally, 232 

cryptobenthic fishes on coral reefs have been found to provide larvae in the near-reef pelagic zone 233 

accounting for almost 60% of consumed reef fish biomass, providing a key energy pathway to higher 234 

trophic levels, producing greater ecosystem-scale transfer efficiency [56].  235 

Other food web factors impacting transfer efficiency include mixotrophs (capable of being 236 

producers and consumers) in planktonic food webs due to their ability to photosynthesize to compensate 237 

for respiratory losses or to reduce energy consumption by catabolic respiration [57].  Predator and prey 238 

size diversity have also been found to affect transfer efficiencies in planktonic communities, with transfer 239 

efficiency decreasing with increasing prey size diversity and conversely increasing with greater predator 240 

size diversity [42].  Additionally, growth in individual prey size drives declines in transfer efficiency [15].  241 

The wide range of processes and scales that influence transfer efficiency result in challenges in its 242 

estimation.    243 

 244 

Estimating transfer efficiency 245 

While transfer efficiencies emerge from diverse metabolic, life cycle, and food web processes, 246 

estimating transfer efficiency requires knowledge of just two fundamental properties: the trophic level of 247 

organisms within an ecosystem determined by their diets, and the production at each trophic level.  Neither 248 



 11

of these, however, is easy to measure.  Indirect transfer efficiency estimates thus rely on combining limited 249 

direct measurements, theory, and models.  Although challenges exist to estimate transfer efficiency in 250 

aquatic ecosystems, there are several approaches that can been used, summarized below.   251 

 252 

Diet estimates 253 

Accurate accounting of trophic level is challenging.  Trophic level quantifies the number of feeding 254 

links between an organism and primary producers (Figure 1), and is a function of an organism’s diet, and 255 

the diet of their prey, etc.  Trophic level can be estimated from diets through direct observation of feeding 256 

behaviour and stomach content analysis.  Alternatively, stable isotope ratios can reveal trophic level due 257 

to fractionation that occurs during assimilation of prey.  However, estimating trophic level is highly 258 

dependent on how one chooses to resolve the relevant food web nodes (individuals, populations, species, 259 

functional groups, size classes).  It is further complicated by temporal variation in the diet of individuals 260 

depending on the species, food availability, and life stages present at any given time (e.g. juveniles and 261 

adults of the same species often eat different prey).  As the trophic level of each relevant food web unit is 262 

required to calculate transfer efficiency from one level to the next, any uncertainty in assigning trophic 263 

level to a single group will be propagated to calculations of transfer efficiency for the ecosystem.   264 

Stable isotopes of nitrogen and carbon used jointly with biomass spectra can elucidate feeding 265 

relationships in food webs [58-60].  Due to differences in fractionation, the tissues of predators 266 

preferentially incorporate heavier nitrogen isotopes from their diet, resulting in a systematic enrichment in 267 

nitrogen-isotope ratio (�15N =15N/14N) with increasing trophic level [61,62].  Size-fractionated stable 268 

isotope analysis is commonly used to quantify the flow of energy in size spectrum models and to inform 269 

predator-prey mass ratios (PPMR [58,63-64]).  The slope (b) of �15N, an indicator of trophic level, as a 270 

function of logarithmic body size class is first used to estimate PPMR: PPMR = n(Δ/b), where Δ is the 271 

fractionation of �15N and n is the logarithmic base of the size classes [65].  Size spectra are often used in 272 

aquatic ecosystems to illustrate the relationship between abundance and/or biomass with size, again 273 

grouped in logarithmic classes.  Biomass size spectra provide information about the amount of production 274 
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in each size class, under the metabolic theory assumption that individual biomass production is a function of 275 

body size [66-67].  Combining the production per size class from the slope of biomass size spectra data 276 

(ß), and the change in trophic level with size from PPMR, allows the estimation of transfer efficiency (TE): TE 277 

= PPMRß+0.75 [17,59,68].  One caution, however, is that stable isotope estimates of PPMR have been 278 

shown to be particularly sensitive to the trophic enrichment factors used in analyses [62,69-71].  For 279 

example, using a trophic enrichment factor of 2 instead of 3.4 can yield PPMR estimates that are 1-3 280 

orders of magnitude lower, and transfer efficiency estimates that are 2-4 times higher [69].   281 

 282 

Production estimates 283 

Productivity – the rate at which energy or biomass is generated  – can be estimated by tracking 284 

population development through time by assessing mass-specific growth and mortality rates using size or 285 

age-structured observations [72].  Quantification of primary production in the oceans relies on 14C 286 

measurements [73] and can be estimated by satellite – albeit with some uncertainty in deeper waters [74]  287 

– by leveraging diverse algorithms (e.g., [75]).  Empirical production to biomass ratios from metabolic 288 

theory can be applied to abundance data to estimate productivity where it is not possible to make such 289 

observations of primary production or to estimate production of higher trophic levels  [72].  These ratios 290 

are generally combined with other variables (e.g., biomass) to form an integrated picture of an ecosystem 291 

from which transfer efficiencies can be derived [48,76] .   292 

Production-based transfer efficiency estimates for temperate Northern hemisphere marine 293 

ecosystems yielded an average transfer efficiency of 13% (ranging from 11-17%) for trophic levels 1-2 294 

(phytoplankton to herbivorous mesozooplankton and benthic organisms) and an average transfer 295 

efficiency of 10% (ranging from 7-12%) for trophic levels 2-3 (zooplankton and benthic organisms to fish) 296 

[76].  Laboratory plankton feeding experiments have yielded higher transfer efficiencies than wild 297 

populations because wild populations often feed at suboptimal prey concentrations (which can be 298 

controlled in the lab) and lab conditions can prevent loss of production to the microbial loop that is not 299 
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consumed in wild populations (Figure 1D; [76]).  The impacts of energy fluxes through these different food 300 

web pathways highlight the importance of integrating processes at the ecosystem scale.      301 

 302 

Model based estimates 303 

Given the wide range of processes controlling, and factors affecting transfer efficiency at multiple 304 

scales, models can be used as an integration tool, to test hypotheses, and to make predictions.  Food web 305 

models provide a means of integrating all available diet and production data.  Transfer efficiency values 306 

can be estimated from food web models by calculating how much energy or biomass production is 307 

transferred between species, functional groups, size classes or trophic levels (e.g. [77-79]).  However, a 308 

priori estimates of transfer efficiency have often directly or indirectly influenced the choice of model 309 

parameters and processes that modellers consider to describe energy flows.  For example, the 10% 310 

transfer efficiency estimated by Pauly and Christensen [4] and the 5%, 10%, and 15% efficiencies for 311 

upwelling, temperate, and tropical ecosystems respectively, estimated by Coll et al. [80] and Libralato et 312 

al. [5] often guide the choice of parameters in the well-established and commonly-used food web and 313 

fisheries modelling framework, Ecopath with Ecosim [77]. However, if all other model parameters are 314 

fixed, the mass-balancing of Ecopath with Ecosim models can be used to estimate transfer efficiencies 315 

within food webs.  316 

The emergence of regularities in observation-based estimates provides a foothold for modellers 317 

simulating the flow of energy through marine ecosystems using theoretical approaches.  Early models of 318 

biomass spectra lack mechanistic details, but can resolve patterns emerging from transfer efficiency 319 

estimates [67,81,82].  Energy flux models aim to find relationships between biodiversity and the flow of 320 

energy through ecosystems and include efficiency terms, however have not yet been applied to estimate 321 

transfer efficiency [83-84].    Size spectrum models are based on allometric principles that predators 322 

tend to be bigger than their prey, so that species can be ignored, and size classes of organisms can be 323 

used to track energy flow instead.  Size spectrum models have been used to derive transfer efficiency by 324 

scaling up from individual level principles of how consumption, search rate, prey choice, and assimilation 325 
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efficiency vary with body size [15,48,85].  As the number of observational studies reporting these 326 

properties grows, it is becoming possible to examine how transfer efficiency differs with both size and 327 

functional group – e.g. small versus large zooplankton, filter feeders versus mobile predatory benthic 328 

invertebrates, fishes of different sizes and feeding modes, ectotherms versus endotherms – and to add 329 

these trait-specific properties to models [52,86].  330 

Process-based plankton food web models from global Earth system models produce primary and 331 

secondary production estimates that can be used to calculate transfer efficiency and global fisheries 332 

catches at the large marine ecosystem (LME) scale [8].  Using this approach, empirical model predictions 333 

best matched observed catches when the microbial loop and benthic and pelagic compartments were 334 

included in the formulation [8].  The ecosystem transfer efficiencies needed to reconcile simulated primary 335 

production with observed fish catches were 14% on average, with tropical and subtropical systems 336 

reduced at 74% of temperate values, and benthic transfer efficiencies greater than pelagic values [8].   337 

FEISTY is a spatially explicit, mechanistic model of three fish functional types based on allometric 338 

scaling principles, basic life cycles, trophic interactions between fishes and their benthic and pelagic food 339 

resources, and fisheries [78].  When coupled with a global Earth system model to provide environmental 340 

conditions and plankton abundances as model inputs, FEISTY recreated general historical patterns of 341 

global fisheries catches [78].  The ecosystem-scale transfer efficiency values estimated by FEISTY ranged 342 

from 5-18% in oceanic, 5-27% in coastal, and 4-23% in upwelling provinces  (Box 2).       343 

The EcoTroph model quantifies the fraction of secondary production transferred between trophic 344 

levels using taxon-specific consumption to production rates based on life history traits [82,87], thermal 345 

habitat [82,88], and also accounts for respiration, excretion, accumulation, and transfer to detritus.  Using 346 

fisheries catch data as an indicator of fish biomass by trophic level, EcoTroph estimated coastal ecosystem 347 

transfer efficiency from secondary production to trophic level 4 that varied as 5.9% in upwelling, 6.5% in 348 

tropical, 8.1% in temperate, and 10.4% in polar regions [79].  This transfer efficiency from trophic levels 349 

2–4 increased from 7.1% to 7.6% from 1950-2010, a finding that was consistent across all coastal 350 

ecosystem types and may be explained by increased fishing exploitation [79,89].  Using sea surface 351 
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temperature projections to 2100, EcoTroph projected global transfer efficiency in coastal ecosystems to 352 

decline by 0.1% until 2040 under both low and high emissions scenarios (RCP2.6 and 8.5 respectively; 353 

[79]).  From 2040-2100, transfer efficiencies were projected to remain stable under low emissions and 354 

decrease from 7.7% to 7.2% under high emissions – with smaller average declines in tropical ecosystems 355 

[79].  Overall, fishing pressure was positively correlated with transfer efficiency [89], while sea surface 356 

temperature was negatively correlated [79].   357 

 358 

Estimated transfer efficiencies across ocean biomes 359 

Our summary of transfer efficiency estimates indicates that it is highly variable and can range 360 

from less than 1% - 27% in upwelling regions, from 2% - 34% in temperate regions, and from 8% - 52% 361 

in tropical and subtropical regions (Box 1).  This large amount of variation in transfer efficiency estimates 362 

means that fish production could vary by one order of magnitude in upwelling provinces, two orders in 363 

coastal, and up to three orders of magnitude in oceanic provinces (Box 2).  Transfer efficiency has been 364 

observed to be highly variable at the ecosystem scale, influenced by ecosystem type (Box 1 & 2) [90,91], 365 

trophic level [1,78], size [69], and is affected by fishing pressure [89], climate change [92-96] 366 

temperature [79,97], and varies through time [6,79,89].  Both process-level analysis and observed 367 

macroscale variations suggest that transfer efficiency increased due to fishing exploitation in the last half 368 

of the 20th century and will decline with increasing temperatures due to climate change [79].  Globally, 369 

fishing exploitation has tended to target large and long-living species leading to declines in abundance 370 

compared to smaller species with faster life histories affecting transfer efficiency [98-101].  These fishing-371 

induced changes in species assemblages may have contributed to the past observed increase in transfer 372 

efficiency [79].  The large variation in transfer efficiency estimates highlights the need for more explicit 373 

consideration, rather than the tradition of relying on average values (Boxes 1, Outstanding Questions ).   374 

 375 

Concluding remarks 376 
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More than 50 years after Ryther’s [2] seminal paper highlighting the potential for fisheries 377 

production to be influenced by transfer efficiency variability (Boxes 1,2), it remains a key uncertainty in 378 

marine ecosystem, fisheries, and climate change research.  Early observational and modelling evidence 379 

suggests that processes (e.g. metabolism, life cycle, and food web structure) and factors (e.g. ecosystem 380 

properties) influencing transfer efficiency are sensitive to environmental conditions and fisheries 381 

exploitation.  Though there are key sources of uncertainty, these processes have received less research 382 

attention than other efforts to estimate future changes in temperature, primary production, and fish 383 

distribution and biomass.  384 

  At this stage, it is unclear if transfer efficiency is truly highly variable in space and time or if 385 

there is large measurement error around estimates.  Improving transfer efficiency estimates by reducing 386 

uncertainty in empirically based estimates and more fully resolving transfer efficiency-controlling processes 387 

in predictive models is a priority for effectively anticipating changing marine resource baselines in 388 

response to climate change to avoid overexploitation (see Outstanding Questions).  This may be possible 389 

as new technologies emerge that enable us to better observe biomass, productivity, and species 390 

interactions.  Crucially, it is important to not limit transfer efficiency values in models, but allow the 391 

potential range of transfer efficiency to emerge from other constraints.  The transfer efficiency field of 392 

research is ripe for further inquiry to build confidence in our understanding of how energy flows through 393 

marine ecosystems.   394 

 395 

Boxes  396 

Box 1. How variable are transfer efficiency estimates and how do they vary according to biome?  397 

Summary of three studies evaluating transfer efficiency values with Ecopath with Ecosim (EwE) [77] models 398 

by oceanographic biome [79,102,103].  Values from [102] were estimated from 234 published EwE 399 

models.  Values from [103] were estimated from the EcoTroph database of EwE models from 1950-2010.  400 

Values from [79] were estimated from the EcoTroph database of EwE models 2000-2010.  401 

 402 

Biome Trophic level Low Mean High 
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Polar/Subarctic-Boreal 2 to 3 & 3 to 4 3.5% 12.0% 25.5% 

Temperate 2 to 3 & 3 to 4 1.9% 9.6% 34.4% 

Tropical/Subtropical 2 to 3 & 3 to 4 0.8% 8.6% 52.0% 

Upwelling 2 to 3 & 3 to 4 0.3% 8.0% 27.1% 

 403 

Methods 404 

Transfer efficiency values from [102] were extracted from the boxplot in their Figure 19. Values 405 

for their trophic level groups III and IV, which represent transfers from trophic level 2 to 3, and trophic 406 

level 3 to 4 respectively, were both used.   407 

Transfer efficiency values from Maureaud et al. [103] reflect mean values published in the main 408 

text. Regional minima and maxima were estimated from the table of efficiency cumulated indicator (ECI) 409 

values by large marine ecosystem (LME) in the supplementary materials.  The LME figure in [79] was used 410 

to assign each LME to a biome and only those LMEs that were entirely of one biome type were used.  411 

Minimum and maximum ECI per region were found over the complete time range  (1950-2010).  Transfer 412 

efficiency (TE) was then calculated from ECI using: TE = ECI1/2.  ECI is transfer efficiency from trophic level 413 

2 to trophic level 4, thus these values of transfer efficiency reflect mean transfer efficiency from trophic 414 

levels 2 to 3 and from trophic levels 3 to 4. 415 

Transfer efficiency values from [79] reflect mean values published in their Figure 4a.  Minima and 416 

maxima per region were extracted from the violin plots in Figure 4a.  These values of transfer efficiency 417 

reflect the mean transfer efficiency from trophic levels 2 to 3 and from trophic levels 3 to 4 over the years 418 

2000-2010. 419 

 420 

Box 2.  How does estimated fish production vary considering variation in transfer efficiency 421 

estimates?   422 

Impact of transfer efficiency variability on estimated fish production based on Ryther’s ocean provinces [2] 423 

calculated using primary productivity and mean number of trophic levels.  Observed fisheries catches also 424 

included for reference. 425 
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Province 

Area-
integrated 
primary 

production 
(tons 

organic C 
per year) 

Mean # 
trophic 
levels 

Transfer efficiency 
range 

Estimated fish production 
(tonnes wet weight) 

Actual catch 
(tonnes wet 

weight) 

   low high low high  

Oceanic 4.08E+10 6 0.05 0.18 7.82E+04 6.04E+07 8.80E+06 

Coastal 9.00E+09 4 0.05 0.27 1.25E+07 1.63E+09 8.14E+07 

Upwelling 2.50E+08 2.5 0.04 0.23 1.89E+07 2.55E+08 1.98E+07 

Total 5.00E+10           1.10E+08 

 426 

Methods 427 

1. Provinces were taken directly from [2]. For FEISTY model output [47] and Sea Around Us fisheries 428 

catch data [97] they were defined as upwelling: LMEs 3, 13, 27, 29; coastal: all non-upwelling 429 

LMEs; oceanic: the remaining ocean. 430 

2. Ryther [2] had a total estimate of area-integrated primary production (APP) of 2x1010 tonnes 431 

organic carbon per year. Modern estimates are 50 Pg carbon per year = 5x1016 g C = 5x1010 432 

tonnes [104].  To update Ryther’s estimates, a total of 50 Pg C was used with his proportional 433 

distribution of APP across the three provinces.  These proportions were oceanic = 81.5%, coastal 434 

= 18.0%, upwelling = 0.5%.  435 

3. Mean number of trophic levels equals Ryther’s [2] trophic level +1 because his Table 3 listed the 436 

number of trophic levels between primary producers and human consumers, whereas the number 437 

here includes primary producers. 438 

4. Low and high transfer efficiency values were the 5th and 95th percentiles of FEISTY model [78] 439 

output of TEeff_ATL (transfer efficiency from trophic level 1 - 5) from each province, which were 440 

then converted to transfer efficiency.  It is calculated as the production of all large fishes (trophic 441 

level 5) divided by the net primary production (trophic level 1) in each model grid cell.  It is 442 
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converted to one transfer efficiency estimate by raising to the power of 1 over the number of 443 

transfer steps (trophic level 5 – trophic level 1 = 4), TEeff_ATL¼.  444 

5. Low and high estimates of fish production use the low and high estimates of transfer efficiency 445 

combined with the area-integrated primary production (APP) and mean number of trophic levels 446 

to calculate fish production as 9 * APP * transfer efficiency ^ (trophic level-1), where 9 is the 447 

constant wet weight to carbon ratio of 9:1 of Pauly & Christensen [4]. 448 

6. Actual catch is based on global average annual reported and reconstructed catches from 2005-449 

2014 [105] multiplied by the proportion of catch in each of Ryther’s [2] provinces.  The global 450 

total catch average over this 10 year time period was 110 tonnes wet weight with the following 451 

proportions: oceanic = 8%, coastal = 74%, and upwelling = 18%. 452 

 453 

Outstanding questions  454 

1. What new data acquisition methods are needed to improve transfer efficiency estimates?  455 

2. Over what spatial and temporal scales do transfer efficiencies vary for different species and 456 

functional groups?  What mechanisms explain this variation?  457 

3. What are the impacts of reduced oxygen and increased ocean acidification on transfer 458 

efficiency?  459 

4. How do individual level processes integrate into community level dynamics and affect transfer 460 

efficiency response to environmental change?  461 

5. How does transfer efficiency respond to changes in species distributions that essentially create new 462 

ecosystems (i.e., new interactions, disrupted feeding patterns, differing adaptation rates) and what 463 

processes are fundamental for models to capture in order to accurately explain observed 464 

variation in transfer efficiency?  465 

  466 
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Figures 467 

Figure 1. Processes controlling transfer efficiency. A – A trophic pyramid depicts the classic view of 468 

production flowing from primary producers to secondary consumers. Roman numerals indicate trophic level.  469 

A 10% transfer efficiency of production is indicated by lighter grey in the pyramid, highlighting how little 470 

primary production gets transferred to the top of the food web. B – At the individual scale, metabolic 471 

processes determine growth efficiency. C – At the species population scale, maturation, reproduction, and 472 

survival of individual life cycles influence transfer efficiency.  D – At the ecosystem scale, complex energy 473 

pathways, including the microbial loop (depicted middle left which includes dissolved organic carbon 474 

(DOC)) and differing paths through benthic and pelagic communities, influence transfer efficiency.  Food 475 

web diagram after [106].    476 

 477 
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